当前位置: 曲轴 >> 曲轴市场 >> 曲轴的加工技术汇编选摘两篇球墨铸铁曲轴铸
1、前言
曲轴是汽车发动机的关键部件之一,其性能好坏直接影响汽车的寿命。曲轴工作时承受着大负荷和不断变化的弯矩及扭矩作用,常见的失效形式为弯曲疲劳断裂及轴颈磨损,因此要求曲轴材质具有较高的刚性和疲劳强度以及良好的耐磨性能。随着球墨铸铁技术的发展,其性能也在不断提高,优质廉价的球铁已成为制造曲轴的重要材料之一。
自年球墨铸铁发明以来,经过不长时间的努力,其抗拉强度提高到了~MPa,接近或超过了碳素钢的水平。与锻钢材料比较,球墨铸铁曲轴既有制造简便、成本低廉,又有吸震、耐磨、对表面裂纹不敏感等锻钢材料所不具备的优良特性,因而球墨铸铁具备了代替锻钢制造曲轴的可能性。
0世纪50年代后期,国内南京汽车制造厂率先批量生产跃进牌汽车球铁曲轴。60年代,二汽首先成为国内按照球铁曲轴生产工艺进行设计和投产的汽车厂。到了70、80年代,中小型柴油机在我国迅速发展,由于球铁制造和经济方面的优势,大多数中小型柴油机都采用球铁曲轴,极大地推动了我国球铁曲轴的应用与发展,出现了一批球铁曲轴专业生产厂。近十多年在汽车工业的快速发展过程中,又新建了一批现代化的球铁曲轴生产厂(或分厂、车间),球铁曲轴在国内得到了普遍应用。
国外球铁曲轴的应用也十分广泛,早在上世纪50年代,国外就开始将球墨铸铁应用于曲轴的生产,如美国的福特公司首先应用,美国克莱斯勒公司、瑞士的GF公司、法国的雷诺和雪铁龙公司、意大利的菲亚特公司、罗马尼亚的布拉索夫汽车厂等先后成功地将球墨铸铁应用于曲轴的生产。在德国,排气量ml以下的柴油机中球铁曲轴占50%,排气量ml以下的汽油机中球铁曲轴占80%;在美国汽车行业中,球铁曲轴占80%。由于制造技术和经济上的优势,球铁曲轴在汽车工业中广泛应用的总体状况今后不会发生太大的变化。
、球铁曲轴的熔炼
对于球铁的熔炼,国内外采用冲天炉,工频炉双联熔炼的较多。铁液一般要经过脱硫处理,铁液脱硫方式现在多采用多孔塞脱硫方法,即吹N气加入CaC或复合脱硫剂搅拌脱硫。脱硫的稳定性对于熔炼曲轴铁液具有重要意义,如采用感应电炉熔炼可以更好地控制合金成分范围,稳定球化,易于保证铁液质量。
球化处理是球铁曲轴生产的重要环节,石墨的形态不仅影响曲轴本体强度性能,而且会影响到曲轴疲劳强度与抗冲击性能。球化剂的选用对于球化处理结果具有重要意义。
国内球化剂主要采用稀土镁硅铁复合球化剂。
稀土具有较好的脱硫及平衡微量元素有害倾向的作用,净化铁液,稳定生产,但起主导球化作用的仍然是镁。鉴于国内铸造厂脱硫水平的提高,球化剂有向低稀土方向发展的趋势。另外,可根据铸态基体组织的需要,使用含Ca、Ba、Bi、Sb等元素的复合球化剂。
球化时采用哪种球化工艺,主要考虑吸收率的高低、反应是否平稳。国外很多工厂采用盖包冲入法,其优点是吸收率较高,烟尘少,投资小,适应面广泛。国内采用的更多为冲入法球化处理工艺,Mg的吸收率偏低(通常30%~50%)。喂丝法球化是最近发展起来的一种球化新工艺,其优点是反应平稳、温度损失少,正在逐步推广。
孕育处理是球化后的铁液必不可少的工序。目前,国内普遍采用含硅75%的硅铁合金,国外球铁孕育剂较多地应用硅铁/锆、硅铁/锰/锆及含钙、钡的复合孕育剂,其中锆能延迟衰退时间,锰能降低熔点,使孕育均匀。采用高效孕育剂可以有效地增加石墨核心,细化晶粒,延缓孕育衰退时间。当前,随流孕育法在美国广泛被采用,可以有效地控制孕育剂在铁液中分布的均匀性。型内孕育法常与其他孕育方法联合使用,是一种复合强化孕育工艺。另外,新近发展的喂丝法孕育工艺,是与喂丝法球化同时进行的一种孕育方法。
3、铸态球铁曲轴合金化
研究资料表明,珠光体基体的组织较铁素体基体组织具有更好的疲劳强度性能,而这正是曲轴所需具有的重要使用性能之一。同时,珠光体基体组织具有更高的常温抗拉强度和耐磨性。故在球铁曲轴的生产中,其基体组织以珠光体基体为主,通常为QT、QT、QT甚至QT牌号,一般要求伸长率在%以上。对于QT、QT来说,采用铸态生产即可以稳定地达到性能要求;而对于QT、QT等较高牌号的生产,很多工厂是通过热处理来实现的,这无疑会增加曲轴制造成本,而实现铸态的相关曲轴牌号具有很大的成本优势。
对于促进基体为珠光体组织,可采用的合金元素很多,如Cu、Mn、Cr、Mo、Ni、Sn等常规合金元素,而诸如Sb、Bi等微量合金元素也同样具有很好的促进珠光体形成功能,但通常采用单一的合金元素不能很好地达到高的牌号与性能。研究表明,采用二元合金或多元合金往往较单一合金加入形式具有事半功倍的作用。对于上述牌号来说,通常采用以Cu为合金化的一个主要元素,Cu具有很好的促进珠光体形成的性能,有利于共晶阶段的石墨化和细化、圆整石墨球,并不会促进碳化物的生成。采用Cu-Mn、Cu-Mo、Cu-Ni、Cu-Cr等二元合金均可以实现QT、QT铸态牌号的生产,但对于易产生碳化物的元素如Mn、Cr等应注意使用范围的控制,同时这些元素也会阻碍石墨化,影响最终的球化效果。
对于QT-的牌号,铸态稳定生产往往需要多种工艺综合进行,当然合金化是保障牌号性能实现的重要因素。试验表明,以Cu-Sb、Cu-Sn为主的合金化,采用Mn、Mo、Ni等作为附加元素,可以实现牌号性能要求。如采用Cu-Sb合金化,甚至可以达到QT-牌号,其中起主导作用的是微量元素Sb。Sb元素是一种微量元素,国外一般不应用于生产,因其加入量较少,范围很窄,不利于生产控制。但Sb却具有很好的提高基体组织珠光体含量的特性,在合适的范围内不会促进碳化物产生,并提高石墨球数量,改善圆整度,尤其在大断面铸件中应用具有很好的效果,可以显著提高强度性能。Sn效果与Sb类似,是一种强烈稳定珠光体的元素,在高牌号灰铁、蠕铁和球铁铸造生产中广泛应用,其加入量通常维持在0.0%~0.05%,不会促进碳化物产生,可以显著提高强度、硬度,但如果Sn加入量过多,将会引起铸件韧性下降。
4、铸态球铁曲轴的生产工艺
对于铸态生产QT、QT等较高牌号曲轴的铸件,很多生产厂家也做过大量的研究试验,其中合金化研究并不是全部,通常需要结合曲轴的大小而采用铁模覆砂、壳型填丸等铸造工艺来共同实现,而这些造型工艺在生产QT、QT牌号的曲轴、凸轮轴时也大量应用,并成为一种成型的发展趋势。
与传统的震压、气冲、高压等造型方式相比,铁模覆砂、壳型填丸生产工艺可以实现曲轴的迅速冷却,并能够根据曲轴形态通过壳型或铁型调整达到顺序凝固的目的,减小内部应力,有利于补缩,可有效提高珠光体含量,细化珠光体并减小层片间距,进而提高强度性能,同时还具有表面精度高、加工余量小、生产效率高、生产稳定等特性。
铁模覆砂、壳型填丸生产工艺对于实现QT-等高牌号曲轴的稳定生产具有重要意义,其与合金化有机的结合,可以极大地提高曲轴力学性能。但对于要求本体取样,限于曲轴种类不同,大小不同,往往采用上述方案也不能稳定达到QT-要求,这需要在曲轴的打箱时间与打箱后冷却方式上做工作,进一步提高曲轴基体内珠光体含量,细化珠光体片间距,进而提高性能,需要严密的生产控制。
5、等温淬火球墨铸铁(ADI)在曲轴上的应用
作为制造曲轴的材料,在性能方面要求高的疲劳强度(弯曲、扭转)、耐磨性和刚性。从等温淬火球墨铸铁材料特性的分析中可以看出,等温淬火球墨铸铁是制造曲轴的理想工程材料。普遍认为,如果球铁的抗拉强度为MPa仍不能满足要求时,可采用等温淬火球墨铸铁代替锻钢。沃尔沃轿车曲轴、福特汽车公司的一些发动机曲轴、一些大功率柴油机曲轴均采用等温淬火球墨铸铁制造。
自0世纪60年代以来,球铁曲轴由于材料和加工成本低廉,因此受到广大设计师的青睐,并在轿车和低载荷汽车上得到大量应用,但限于普通球铁抗弯疲劳强度较锻钢低的限制,其在中等负荷尤其重载荷发动机汽车上很难达到性能要求。发动机曲轴服役条件非常复杂而苛刻,实际中大量的曲轴失效事故统计表明,弯曲和扭转疲劳断裂是曲轴的主要破坏形式,特别是弯曲疲劳强度失效最为常见。等温淬火球墨铸铁材料具有较高的弯曲疲劳强度和整体强度,同时由于其基体内存在奥氏体组织,具有显著的加工硬化效果,经圆角滚压后,发生马氏体转变,形成很高的残余压应力,提高曲轴的疲劳强度。
因此,球铁曲轴替代某些锻钢曲轴具有很大的潜力,同时等温淬火球墨铸铁曲轴较锻钢可减轻自身质量10%左右,制造成本亦可大大降低,作为一种新型的曲轴材料具有很好的应用推广前景。
在国内,南京理工大学对用等温淬火球墨铸铁制造轿车发动机Q曲轴进行了试验。经台架试验、全速全负荷可靠性试验和3万km道路试验,通过了部级鉴定,安全系数1.7,高于进口锻钢曲轴的安全系数(1.6),主轴颈和连杆轴颈磨损量也远低于机械部标准。等温淬火球墨铸铁曲轴的常规力学性能、疲劳强度、耐磨强度、工艺性、安全可靠性等均满足设计和使用要求,经济效益明显。据成本推算显示,进口锻钢曲轴:国产40Cr锻钢曲轴:等温淬火球墨铸铁曲轴=.7:1.84:1。
一汽铸造有限公司技术中心进行过CA增压中冷柴油发动机曲轴的等温淬火球铁化试验研究,曲轴经圆角滚压后进行疲劳强度测试,测试结果通过弯矩00MPa。这表明,圆角滚压对曲轴疲劳强度的提高非常重要,而等温淬火球铁曲轴较珠光体具有更高的整体强度和硬度,故在更大的滚压压力作用下的效果更好。试验结果显示,对于CA曲轴,采用等温淬火球墨铸铁制造,疲劳强度达到MPa以上,曲轴使用安全系数达到.,远高于0CrMo(现制造曲轴材料,安全系数1.3),故其应用在技术上是可行的。
等温淬火球墨铸铁材料代替锻钢制造曲轴,从静强度和弯曲疲劳强度相比,等温淬火球铁曲轴可胜任大功率增压柴油机的服役条件,而其在成本上又具有显著优势,用等温淬火球铁生产大功率增压柴油机曲轴是一具有重大技术、经济效益的项目,应引起国内汽车界的 曲轴是发动机中最典型、最重要的零件之一,其功用是将活塞连杆传递来的气体压力转变为转矩,作为动力而输出做功,驱动器他工作机构,并带动内燃机辅助装备工作。
发动机主要受力零件曲轴其疲劳破坏最常见的是金属疲劳破坏,即弯曲疲劳破坏和扭转疲劳破坏,前者的发生概率大于后者。弯曲疲劳裂纹首先产生在连杆轴颈(曲柄销)或主轴颈圆角处,然后向曲柄臂发展。扭转疲劳裂纹产生于加工不良的油孔或圆角处,然后向与轴线成方向发展。金属疲劳破坏是由于随时间周期性变化的变应力作用的结果。曲轴破坏的统计分析表明,80%左右是弯曲疲劳产生的。
曲轴制造工艺:目前车用发动机曲轴材质有球墨铸铁和钢两类。由于球墨铸铁的切削性能良好,可获得较理想的结构形状,并且和钢质曲轴一样可以进行各种热处理和表面强化处理来提高曲轴的抗疲劳强度、硬度和耐磨性。球墨铸铁曲轴成本只有调质钢曲轴成本的1/3左右,所以球墨铸铁曲轴在国内外得到了广泛应用。统计资料表明,车用发动机曲轴采用球墨铸铁材质的比例在美国为90%,英国为85%,日本为60%,此外,德国、比利时等国家也已经大批量采用。国内采用球墨铸铁曲轴的趋势则更加明显,中小型功率柴油机曲轴85%以上采用球墨铸铁,功率在kW以上的发动机曲轴多采用锻钢曲轴。
曲轴制造技术:
1、球墨铸铁曲轴毛坯铸造技术
球墨铸铁曲轴的生产继QT-、QT-等几种牌号后,广西玉柴等经过攻关已能稳定生产QT-6牌号的曲轴,为曲轴“以铁代钢”奠定了基础。
(1)熔炼
高温低硫纯净铁水的获得是生产高质量球墨铸铁的关键。国内主要是以冲天炉为主的生产设备,铁水未进行预脱硫处理;其次是高纯生铁少、焦炭质量差。
目前已采用双联外加预脱硫的熔炼方法,采用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。目前,在国内铁水成分的检测已普遍采用真空直读光谱仪来进行。
()造型
气流冲击造型工艺明显优于粘土砂型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量等特点,这对于多拐曲轴尤为重要。目前,国内已有一些曲轴生产厂家从德国、意大利、西班牙等国引进气流冲击造型工艺,不过,引进整条生产线的只有极少数厂家,如文登天润曲轴有限公司引进了德国KW铸造生产线。
、钢曲轴毛坯的锻造技术
近几年来,国内已引进了一批先进的锻造设备,但由于数量少,加之模具制造技术和其他一些设施跟不上,使一部分先进设备未发挥应有的作用。从总体上来讲,需改造和更新的陈旧的普通锻造设备多,同时,落后的工艺和设备仍占据主导地位,先进技术有所应用但还不普遍。
3、机械加工技术
目前国内曲轴生产线多数由普通机床和专用机床组成,生产效率和自动化程度相对较低。粗加工设备多采用多刀车床车削曲轴主轴颈及拐颈,工序的质量稳定性差,容易产生较大的内应力,难以达到合理的加工余量。一般精加工采用MQ等曲轴磨床粗磨-半精磨-精磨-抛光,通常靠手工操作,加工质量不稳定。
随着贸易全球化的到来,各厂家已意识到了形势的严峻性,纷纷进行技术改造,全力提升企业的竞争力,近年来引进了许多先进设备和技术,进展速度很快。就目前状况来讲,这些设备和技术基本依赖进口。
4、热处理和表面强化处理技术
曲轴的热处理关键技术是表面强化处理。球墨铸铁曲轴一般均采用正火处理,为表面处理做好组织准备,表面强化处理一般采用感应淬火或氮化工艺。锻钢曲轴则采用轴颈与圆角淬火工艺。引进的设备有AEG全自动曲轴淬火机床、EMA淬火机床等。
据国外资料介绍,球墨铸铁曲轴采用圆角滚压工艺与离子氮化结合使用进行复合强化,可使整条曲轴的抗疲劳强度提高%以上。国内部分厂家近几年也进行了这方面的实践,取得了良好的效果。
曲轴圆角滚压加工方面,德国赫根塞特(HEGENSCHEIDT-MFDAUTOMATIC)生产的机床应用了变压力滚压和矫正专利技术,是比较好的圆角滚压设备,但价格昂贵。目前国内在这方面的研究也有了一定的成果,东风汽车有限公司工艺研究所的“曲轴圆角滚压强化与滚压校直技术研究开发及应用”解决了国内企业化巨资引进国外技术的问题,该课题获得了原国家机械工业局科技进步二等奖。
曲轴制造技术的发展趋势
1、铸造技术
(1)熔炼
对于高牌号铸铁的熔化,将采用大容量中频炉进行熔炼或变频中频炉熔炼,并采用直读光谱仪检测铁水成分。球墨铸铁处理采用转包,研制新品种球化剂,采用随流孕育、型内孕育及复合孕育等先进孕育方法。熔化过程的各参数实现微机控制和屏幕显示。
()造型
消失模铸造将得到发展和推广。在砂型铸造中,无箱射压造型和挤压造型将受到重视并继续在新建厂或改建厂中推广应用。原有的高压造型线将继续使用,其中部分关键元件将得到改进,实现自动组芯和下芯。
、锻造技术
以热模锻压力机、电液锤为主机的自动线是锻造曲轴生产的发展方向,这些生产线将普遍采用精密剪切下料、辊锻(楔横轧)制坯、中频感应加热等。
3、机械加工技术
曲轴粗加工将广泛采用数控车床、数控内铣床、数控车拉床等先进设备对主轴颈、连杆轴颈进行数控车削、内铣削、车-拉削加工,以有效减少曲轴加工的变形量。曲轴精加工将广泛采用CNC控制的曲轴磨床对其轴颈进行精磨加工。
此种磨床将配备砂轮自动动平衡装置、中心架自动跟踪装置、自动测量、自动补偿装置、砂轮自动修整、恒线速度等功能要求,以保证磨削质量的稳定。高精设备依赖进口的现状,估计短期内不会改变。
4、热处理技术和表面强化技术
(1)曲轴中频感应淬火
曲轴中频感应淬火将采用微机监控闭环中频感应加热装置,具有效率高、质量稳定、运行可控等特点。
()曲轴软氮化
对于大批量生产的曲轴来说,为了提高产品质量,今后将采用微机控制的氮基气氛气体软氮化生产线。氮基气氛气体软氮化生产线由前清洗机(清洗干燥)、预热炉、软氮化炉、冷却油槽、后清洗机(清洗干燥)、控制系统及制气配气等系统组成。
(3)曲轴表面强化技术
球墨铸铁曲轴圆角滚压强化将广泛应用于曲轴加工中,另外,圆角滚压强化加轴颈表面淬火等复合强化工艺也将大量应用于曲轴加工中,锻钢曲轴强化方式将会更多地采用轴颈加圆角淬火处理。
曲轴断裂的主要原因:
(1)机油长期使用变质;严重的超载、超挂,造成发动机长期超负荷运行而出现烧瓦事故。由于发动机烧瓦,曲轴受到严重磨损。
()发动机修好后,装车没经过磨合期,即超载超挂,发动机长期超负荷运行,使曲轴负荷超出容许的极限。
(3)在曲轴的修理中采用了堆焊,破坏了曲轴的动力平衡,又没有做平衡校验,不平衡量超标,引起发动机较大的振动,导致曲轴的断裂。
(4)由于路况不佳,车辆又严重超载超挂,发动机经常在扭振临界转速内行,减振器失效,也会造成曲轴扭转振动疲劳破坏而断裂。
曲轴的维修注意事项:
(1)在曲轴修理过程中,应仔细检查曲轴有无裂纹、弯曲、扭曲等缺陷,和主轴瓦与连杆轴瓦的磨损情况,保证主轴颈与主轴瓦、连杆轴颈与连杆轴瓦之间的配合间隙在允许范围之内。
()曲轴裂纹多发生在曲柄臂与轴颈之间的过渡圆角处,以及轴颈中的油孔处。
(3)维修装复曲轴时应保证飞轮的运转平衡。
(4)内燃机发生了烧瓦、捣缸等重大事故后,要对曲轴进行全面的检修。
曲轴技术汇编资料获取
转载请注明:http://www.aideyishus.com/lkjg/75.html